\(\int \frac {x^5}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx\) [388]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 183 \[ \int \frac {x^5}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=-\frac {5 \text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right ) \sinh \left (\frac {a}{b}\right )}{8 b c^6}+\frac {5 \text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {3 a}{b}\right )}{16 b c^6}-\frac {\text {Chi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {5 a}{b}\right )}{16 b c^6}+\frac {5 \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 b c^6}-\frac {5 \cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^6}+\frac {\cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^6} \]

[Out]

5/8*cosh(a/b)*Shi((a+b*arcsinh(c*x))/b)/b/c^6-5/16*cosh(3*a/b)*Shi(3*(a+b*arcsinh(c*x))/b)/b/c^6+1/16*cosh(5*a
/b)*Shi(5*(a+b*arcsinh(c*x))/b)/b/c^6-5/8*Chi((a+b*arcsinh(c*x))/b)*sinh(a/b)/b/c^6+5/16*Chi(3*(a+b*arcsinh(c*
x))/b)*sinh(3*a/b)/b/c^6-1/16*Chi(5*(a+b*arcsinh(c*x))/b)*sinh(5*a/b)/b/c^6

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {5819, 3393, 3384, 3379, 3382} \[ \int \frac {x^5}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=-\frac {5 \sinh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 b c^6}+\frac {5 \sinh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^6}-\frac {\sinh \left (\frac {5 a}{b}\right ) \text {Chi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^6}+\frac {5 \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 b c^6}-\frac {5 \cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^6}+\frac {\cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^6} \]

[In]

Int[x^5/(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])),x]

[Out]

(-5*CoshIntegral[(a + b*ArcSinh[c*x])/b]*Sinh[a/b])/(8*b*c^6) + (5*CoshIntegral[(3*(a + b*ArcSinh[c*x]))/b]*Si
nh[(3*a)/b])/(16*b*c^6) - (CoshIntegral[(5*(a + b*ArcSinh[c*x]))/b]*Sinh[(5*a)/b])/(16*b*c^6) + (5*Cosh[a/b]*S
inhIntegral[(a + b*ArcSinh[c*x])/b])/(8*b*c^6) - (5*Cosh[(3*a)/b]*SinhIntegral[(3*(a + b*ArcSinh[c*x]))/b])/(1
6*b*c^6) + (Cosh[(5*a)/b]*SinhIntegral[(5*(a + b*ArcSinh[c*x]))/b])/(16*b*c^6)

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3393

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5819

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1),
x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \frac {\sinh ^5\left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{b c^6} \\ & = \frac {i \text {Subst}\left (\int \left (\frac {i \sinh \left (\frac {5 a}{b}-\frac {5 x}{b}\right )}{16 x}-\frac {5 i \sinh \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{16 x}+\frac {5 i \sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{8 x}\right ) \, dx,x,a+b \text {arcsinh}(c x)\right )}{b c^6} \\ & = -\frac {\text {Subst}\left (\int \frac {\sinh \left (\frac {5 a}{b}-\frac {5 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^6}+\frac {5 \text {Subst}\left (\int \frac {\sinh \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^6}-\frac {5 \text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{8 b c^6} \\ & = \frac {\left (5 \cosh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{8 b c^6}-\frac {\left (5 \cosh \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {3 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^6}+\frac {\cosh \left (\frac {5 a}{b}\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {5 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^6}-\frac {\left (5 \sinh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{8 b c^6}+\frac {\left (5 \sinh \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {3 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^6}-\frac {\sinh \left (\frac {5 a}{b}\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {5 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^6} \\ & = -\frac {5 \text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right ) \sinh \left (\frac {a}{b}\right )}{8 b c^6}+\frac {5 \text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {3 a}{b}\right )}{16 b c^6}-\frac {\text {Chi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {5 a}{b}\right )}{16 b c^6}+\frac {5 \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 b c^6}-\frac {5 \cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^6}+\frac {\cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^6} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.74 \[ \int \frac {x^5}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=-\frac {10 \text {Chi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right ) \sinh \left (\frac {a}{b}\right )-5 \text {Chi}\left (3 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right ) \sinh \left (\frac {3 a}{b}\right )+\text {Chi}\left (5 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right ) \sinh \left (\frac {5 a}{b}\right )-10 \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )+5 \cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (3 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )-\cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (5 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )}{16 b c^6} \]

[In]

Integrate[x^5/(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])),x]

[Out]

-1/16*(10*CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b] - 5*CoshIntegral[3*(a/b + ArcSinh[c*x])]*Sinh[(3*a)/b] +
CoshIntegral[5*(a/b + ArcSinh[c*x])]*Sinh[(5*a)/b] - 10*Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]] + 5*Cosh[(3
*a)/b]*SinhIntegral[3*(a/b + ArcSinh[c*x])] - Cosh[(5*a)/b]*SinhIntegral[5*(a/b + ArcSinh[c*x])])/(b*c^6)

Maple [A] (verified)

Time = 0.23 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.81

method result size
default \(\frac {{\mathrm e}^{\frac {5 a}{b}} \operatorname {Ei}_{1}\left (5 \,\operatorname {arcsinh}\left (c x \right )+\frac {5 a}{b}\right )-5 \,{\mathrm e}^{\frac {3 a}{b}} \operatorname {Ei}_{1}\left (3 \,\operatorname {arcsinh}\left (c x \right )+\frac {3 a}{b}\right )+10 \,{\mathrm e}^{\frac {a}{b}} \operatorname {Ei}_{1}\left (\operatorname {arcsinh}\left (c x \right )+\frac {a}{b}\right )-10 \,{\mathrm e}^{-\frac {a}{b}} \operatorname {Ei}_{1}\left (-\operatorname {arcsinh}\left (c x \right )-\frac {a}{b}\right )+5 \,{\mathrm e}^{-\frac {3 a}{b}} \operatorname {Ei}_{1}\left (-3 \,\operatorname {arcsinh}\left (c x \right )-\frac {3 a}{b}\right )-{\mathrm e}^{-\frac {5 a}{b}} \operatorname {Ei}_{1}\left (-5 \,\operatorname {arcsinh}\left (c x \right )-\frac {5 a}{b}\right )}{32 c^{6} b}\) \(149\)

[In]

int(x^5/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/32*(exp(5*a/b)*Ei(1,5*arcsinh(c*x)+5*a/b)-5*exp(3*a/b)*Ei(1,3*arcsinh(c*x)+3*a/b)+10*exp(a/b)*Ei(1,arcsinh(c
*x)+a/b)-10*exp(-a/b)*Ei(1,-arcsinh(c*x)-a/b)+5*exp(-3*a/b)*Ei(1,-3*arcsinh(c*x)-3*a/b)-exp(-5*a/b)*Ei(1,-5*ar
csinh(c*x)-5*a/b))/c^6/b

Fricas [F]

\[ \int \frac {x^5}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\int { \frac {x^{5}}{\sqrt {c^{2} x^{2} + 1} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}} \,d x } \]

[In]

integrate(x^5/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*x^2 + 1)*x^5/(a*c^2*x^2 + (b*c^2*x^2 + b)*arcsinh(c*x) + a), x)

Sympy [F]

\[ \int \frac {x^5}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\int \frac {x^{5}}{\left (a + b \operatorname {asinh}{\left (c x \right )}\right ) \sqrt {c^{2} x^{2} + 1}}\, dx \]

[In]

integrate(x**5/(a+b*asinh(c*x))/(c**2*x**2+1)**(1/2),x)

[Out]

Integral(x**5/((a + b*asinh(c*x))*sqrt(c**2*x**2 + 1)), x)

Maxima [F]

\[ \int \frac {x^5}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\int { \frac {x^{5}}{\sqrt {c^{2} x^{2} + 1} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}} \,d x } \]

[In]

integrate(x^5/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^5/(sqrt(c^2*x^2 + 1)*(b*arcsinh(c*x) + a)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {x^5}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^5/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {x^5}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\int \frac {x^5}{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {c^2\,x^2+1}} \,d x \]

[In]

int(x^5/((a + b*asinh(c*x))*(c^2*x^2 + 1)^(1/2)),x)

[Out]

int(x^5/((a + b*asinh(c*x))*(c^2*x^2 + 1)^(1/2)), x)